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Abstract. We present a robust region segmentation method based
on a pseudo-distance map (PDM) that uses a watershed algorithm
as a segmentation tool. The PDM is a regularized version of a Eu-
clidean distance map (EDM) directly computed from the edge-
strength function (ESF) of an input image without edge detection,
which involves a thresholding operation. This unavoidably causes
useful region boundary information loss from the original image. We
show that applying the watershed algorithm to the PDM significantly
reduces oversegmentation, and the final segmentation results ob-
tained by a simple region-merging process are more accurate and
meaningful and less sensitive to noise than those of the gradient-
based or EDM-based methods. We also propose a simple and effi-
cient region-merging criterion that considers both boundary
strengths and inner intensities of regions to be merged. We tested
and verified the robustness of our method with a variety of synthetic
and real images. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1758952]

1 Introduction

A Euclidean distance map~EDM! is an image where eac
point is assigned a Euclidean distance to the nearest s
boundary point. Instead of an original image, the EDM o
tained is commonly used in vision applications, such
skeletonization and segmentation. For example, si
Blum’s proposal,1 a medial axis is generally accepted as
definition of a skeleton in the literature, and as a skelet
ization method, the medial axis is extracted2,3 by detecting
ridges of the EDM. In the applications in Refs. 4 and 5,
region segmentation the watershed transformation was
plied to the EDM constructed from an edge image, sinc
has the characteristic of detecting meaningful bounda
by separating connected or overlapping blobs when app
to the corresponding EDM, as shown in Fig. 1.

The common requirement of the preceding approache
that the boundary contour of a shape must be determ
before its skeletonization or segmentation. In the case
binary image, the requirement is trivial because the bou
ary contour of the binary image is always clearly det
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mined by its definition. However, this becomes an obsta
when attempting to skeletonize or segment a gray-scale
age with the methods using the EDM, since no clear bou
ary of a shape or a region is defined in gray-scale image
one tries to skeletonize or segment gray-scale images f
the EDM, the boundaries of the regions should be extrac
directly with edge detection techniques. However, sin
edge detection always involves a thresholding operation
is unavoidable that some useful information will be lo
from the original image, which seems to be necessary
extract a reliable skeleton or to accurately segment regio
Some spurious edges resulting from the thresholding op
tion may change the shapes of skeletons and cause n
segmented regions. Moreover, these methods are us
sensitive to a change in the thresholding values of the e
detection process.

In previous work,6 we proposed a new tool, called
pseudo-distance map~PDM!, to directly extract skeletons
from gray-scale images without region segmentation
edge detection. In this paper, we present a robust reg
segmentation method based on the PDM using a waters
algorithm as a segmentation technique and show that
method provides segmentation results superior to conv
tional methods. A typical approach for segmenting a gr
scale image with watershed transformation is to make
of its gradient image as an input to the transformatio
since high gradients constitute watershed lines that co
spond to the region boundaries of the gray-scale image
our proposed method, however, we utilize the PDM as
input to the watershed algorithm. This maintains the adv
tage of the EDM, which can segment meaningful boun
aries, as depicted in Fig. 1, while overcoming the shortco
ings of the EDM caused by the thresholding operation.

A PDM can be regarded as a relaxed and regulari
version of an EDM. While the EDM is obtained from a
edge image, the PDM is directly computed from the ed
strength function~ESF! of a given gray-scale image with
out thresholding it. An ESF is a smooth function that a
proaches the value of one at the shape boundary and de
rapidly to zero while receding from the boundary. Th
value of the PDM is almost equal to zero where ed
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Robust region segmentation . . .
strength is relatively large, and the function has nearly c
stant slopes at the points with small edge strength, exce
the positions where two opposite slopes meet, which a
ally correspond to the skeleton of the input image. Given
ESF, the PDM is obtained by numerically solving the p
tial differential equations~PDEs! that are derived from the
energy functional we propose. Our method complet
avoids performing the edge detection process by repla
the edge map and the EDM with the ESF and the PD
respectively. Therefore, the proposed PDM-based met
fully utilizes the edge strength information of the give
image and contains the regularization effect by the va
tional formulation. Hence, the application of watersh
transformation to the inverted PDM significantly reduc
the oversegmentation problem caused by noisy gradien
spurious edges, and usually produces more accurate
less noisy initial segmentation results than the gradient
EDM-based methods.

In addition, we propose a simple and efficient regio
merging criterion that considers both boundary streng
and inner intensities of the regions to be merged. Thro
several experiments, we show that our region-merg
method, along with our initial segmentation method, giv
robust and reliable final segmentation results.

This paper is organized as follows. Section 2, descri
how to obtain the ESF and the PDM, including some ide
for faster computation of the PDM. In Sec. 3, the over
procedure of the proposed method is provided, includ
our new region-merging criterion. Experimental results
shown in Sec. 4, where we compare the performance of
method with those of the conventional gradient- or ED
based methods and show the robustness of the PDM-b
method. Finally, conclusions and discussions are given
Sec. 5.

Fig. 1 Segmentation of overlapping cells by applying the watershed
transformation to the inverted distance map.5
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2 ESF and PDM

2.1 EDM versus PDM

An EDM is defined as an image where each pixel is
signed the value of the distance to the nearest object bo
ary pixel. We developed a PDM as a regularized version
the conventional EDM.6

Note the connection between the EDM and the eiko
equation. Consider a curve evolving with the PDE

]C

]t
5F~x,y!N, ~1!

whereC is a parameterized representation of the curveN
is the unit inward~or outward! normal to the curve, and
F(F.0) is a speed function which depends only on t
position (x,y). If T(x,y) represents the time at which th
curve crosses a point (x,y), it can be shown thatT(x,y)
satisfies the eikonal equation7,8

i¹TiF51, T50 on G, ~2!

whereG is the initial location of the curve. The connectio
between the EDM and the eikonal equation is the fact t
the EDM can be interpreted as the solutionT of Eq. ~2!,
with F equal to 1 ifG corresponds to the object boundar
There are several methods for solving Eq.~2!, which in-
clude, for example, Sethian’s fast marching method.7 How-
ever, if the boundary location is not precisely given, and
know only the strength of the boundary at each pixel lo
tion, can we compute something similar toT in such a
restricted situation? The development of a PDM is mo
vated by this question.

2.2 ESF

As mentioned in Sec. 1, before computing the PDM,
must first obtain the ESF from a given gray-scale image
this subsection, we introduce a variety of ESFs availab
The simplest form of a ESF,v, would be

v5g~ i¹Gs* I 0i !, ~3!

where Gs is a Gaussian kernel of sizes, I 0 is an input
gray-scale image, andg is a normalizing function that in-
creases monotonically and maps@0,̀ # to @0,1#. The param-
eters controls the overall scale of the ESF. It can be sho
that convolving an image with a Gaussian kernel is equi
lent to performing isotropic linear diffusion with an initia
state set toI 0 . Perona and Malik proposed an anisotrop
diffusion equation for edge-preserving smoothing:9

I t5¹•c~ i¹I i !¹I with I 5I 0 at t50, ~4!

wherec is called a conductance function. They sugges
two conductance functions:

c~x,y,t !5expF2
i¹I ~x,y,t !i2

K2 G and ~5!
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 603
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c~x,y,t !5
1

11i¹I ~x,y,t !i2/K2 . ~6!

In short,K plays the role of a threshold for gradients, th
is, if the gradient at (x,y,t) is larger than the predefine
value of K then the conductancec(x,y,t) decays rapidly,
the image valueI (x,y,t) is less smoothed, and its gradie
information is preserved. Therefore, the largerK we use,
the more gradient information of the given image we lo
The ESF ofI (x,y,t) can be computed by negating the ro
of the conductance function and given by

v512c~x,y,t !. ~7!

Other anisotropic diffusion equations can be found in Re
10 and 11.

Ambrosio and Tortorelli12 proposed an ESF that is ob
tained by minimizing the functional

E~ I ,v !5E m~12v !2i¹I i21h~ I 2I 0!21
s

2
i¹vi2

1
v2

2s
dx dy, ~8!

whereI 0 is an input image,I is its smoothed image, andv
is an ESF. The two functionsI andv that minimize Eq.~8!
can be computed using the variational approach,13 which
gives rise to the following coupled PDEs:

I t5¹•~12v !2¹I 2
h

m
~ I 2I 0!, ~9!

v t5¹2v2
v
s2 1

2m

s
~12v !i¹I i2. ~10!

Note that the larger them/h, the more the details of the ES
are smoothed. For experiments, we adopted this met
which is more sophisticated than the first two metho
based on a Gaussian kernel and a conductance functio
an anisotropic diffusion at the cost of additional compu
tional burden. Of course, readers can adopt any o
methods14,15 for obtaining the ESFs.

2.3 PDM

In this subsection, we introduce how to compute a PD
from a given ESF.

2.3.1 One-dimensional formulation

We begin by introducing an energy functional that will b
minimized to obtain a PDM in one dimension. The fun
tional is extended to the 2-D case in the next subsect
Assuming that an ESFv(x) is given, which ranges from 0
to 1 and monotonically increases as an edge atx becomes
stronger, the functional is given by
604 / Journal of Electronic Imaging / July 2004 / Vol. 13(3)
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~11!

wherea, b, a, and b are positive constants, andf is the
PDM to be computed. The functional works as follows. Ifv
is small, the minimization ofE will be dominated by the
term (B). This means that the slope off will approacha or
2a. If v is large, the term (A) will also affect the minimi-
zation ofE and the constraints onf will work; that is, the
magnitudes off and f x should become zero andf xx should
approach the positive constantb. These constraints givef a
local minima of nearly zero at positions wherev is large.
Therefore, the overall shape off will become similar to that
of an EDM after the minimization ofE.

The function f that minimizes the functionalE can be
computed by the variational method if the initial form off
is appropriately given. In the variational method, PDEs c
responding to a given energy functional are obtained us
the calculus of variations,13 and the PDEs are discretized
compute their numerical solutions. Note thatf xx in Eq. ~11!
causes the fourth-order derivative off in the corresponding
PDE, which tends to make the PDE noise sensitive.
avoid the use off xx , we introduce a new functiong, which
approximates16 f x , and incorporate it with Eq.~11!:

E~ f ,g!5E av@ f 21 f x
21~b2gx!

2#1b~a22 f x
2!2

1~g2 f x!
2 dx. ~12!

Equation~12! gives rise to two PDEs:

f t5a@~v f x!x2v f #12b f xx~3 f x
22a2!1~ f xx2gx!, ~13!

gt5a@~vgx!x2bvx#1~ f x2g!. ~14!

We implemented the preceding PDEs using cen
finite-difference approximations shown in Sec. 2.3.3 a
solved them with the initial value off set to 12v. Unfor-
tunately, according to our experiments, the convergenc
the PDE in Eq.~13! was inadequate; that is, it was ver
slow and often stuck to unwanted local extrema. To sp
up the convergence and avoid falling into the local extrem
we added a new term to Eq.~13!:

f t5a@~v f x!x2v f #12b f xx~3 f x
22a2!1~ f xx2gx!

1gf f xx , ~15!

whereg is a positive constant and

f5H 1 if $ f ,0% or $ f x'0,f xx.0,v'0%,

0 otherwise.
~16!

During the iterative computation off , the new term acti-
vates only whenf (x) has a negative value atx, or has a
local minimum wherev is very small. The two conditions
in fact, illustrate cases that are impermissible during
formulation of a PDM. The new term causesf to escape
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Fig. 2 (a) Input signal, (b) ESF v, (c) initial f512v, and (d) f after 60,000 iterations.
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from them by smoothing it out where they occur. Our a
tual implementation off is as follows:

f5H 1 if $ f ,e1% or $ugu,e2 ,gx.e3 ,v,e4%,

0 otherwise,
~17!

wheree1<0,e2.0,e3.0,e4.0, and their absolute value
are very small.

An illustrative example is given in Fig. 2. The inpu
signal of Fig. 2~a! has two step edges atx530 and 90. The
ESF of Fig. 2~b! was obtained from the input signal usin
Ambrosio and Tortorelli’s method, whose details are giv
in Sec. 2.2. The result of Fig. 2~d! was obtained by setting
a50.1, b51.0, a50.35, b53a, g53.0, e1520.1, e2

50.05,e350.01,e450.05, andDt50.1. Note that we can
compute the approximate distance between the two ed
from the value off at the center. In Fig. 2~d!, f is equal to
10.35 at the center, from which the distance is computed
10.35/a32559.14, which is approximately equal to th
true distance 60.
s

y

At first glance, our method seems to involve many p
rameters to be adjusted. However, considering the role
each parameter, one can see that the parametersg, e1 , e2 ,
e3 , e4 , a, andb are independent of the given ESFs. The
fore, once the parameter values selected are proven t
suitable for convergence, they are, ipso facto, also suita
for other ESFs.

Note that just as in the case of the ESF, we can con
the smoothness of the resulting PDM by adjustinga andb.
As shown in Fig. 3, this characteristic is verified by dete
ing ridges ~they actually correspond to skeletons of t
given image! from PDMs with a different smoothness. It i
obvious from the results that, asa/b becomes larger, more
detailed structures appear, but the resulting ridges bec
noisier.

2.3.2 Extension to two dimensions

The extension of Eq.~12! to two dimensions is straightfor
ward:
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 605
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Fig. 3 Ridges of PDMs obtained from the input image of Fig. 10 (shown in Sec. 4) with different values
of a and fixed value of b51.5: (a) a50.02 and (b) a50.2.
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E~ f ,g,h!5E avF f 21 f x
21 f y

21~b2gx!
21

1

2
~gy1hx!

2

1~b2hy!2G1b~a22i¹ f i2!21~g2 f x!
2

1~h2 f y!2 dx dy, ~18!

where

g' f x and h' f y . ~19!

Consequently,

f xx'gx , f yy'hy , and f xy'
1

2
~gy1hx!. ~20!

The corresponding PDEs are

f t5a~¹•v¹ f 2v f !12b@~ i¹ f i22a2!¹2f 12~ f x
2f xx

12 f xf yf xy1 f y
2f yy!#1~¹2f 2gx2hy!, ~21!

gt5a$2@v~gx2b!#x1@v~gy1hx!#y%12~ f x2g!, ~22!

ht5a$@v~gy1hx!#x12@v~hy2b!#y%12~ f y2h!. ~23!

We also added a new termgf¹2f to Eq.~21! for faster and
more reliable convergence, wheref is given by
ctronic Imaging / July 2004 / Vol. 13(3)
f5H 1 if $ f ,e1% or $udet~H!u,e2 ,trace~H!.e3 ,v,e4%

0 otherwise,

~24!

wheree1<0, e2.0, e3.0, e4.0, and their absolute value
are very small. The matrixH is a Hessian matrix off ,
which is given by

H5F f xx f xy

f xy f yy
G'F gx 1/2~gy1hx!

1/2~gy1hx! hy
G . ~25!

The condition$udet(H)u,e2 , trace(H).e3% in Eq. ~24! is
provided to detect valleys~i.e., local minimum! of f . Note
that the two eigenvaluesl1 and l2 (ul1u<ul2u) of the
Hessian matrix off (x,y) correspond, respectively, to th
minimum and maximum second-order directional deriv
tives ~i.e., curvatures! of f at (x,y). Therefore, at the val-
leys of f , the following condition is usually satisfied:

det~H!5l1•l2'0 and trace~H!5l11l2'l2.0. ~26!

2.3.3 Numerical implementation

The PDEs introduced in this paper are numerically solv
using the following finite-difference approximations:17
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] f

]t
'

1

Dt
@ f ~ t1Dt !2 f ~ t !#, ~27!

] f

]x
'

1

2Dx
@ f ~x1Dx!2 f ~x2Dx!#, ~28!

]2f

]x2 '
1

Dx2 @ f ~x1Dx!22 f ~x!1 f ~x2Dx!#, ~29!

]2f

]x]y
'

1

4DxDy
@ f ~x1Dx,y1Dy!2 f ~x2Dx,y1Dy!#

2 f ~x1Dx,y2Dy!1 f ~x2Dx,y2Dy!]. ~30!

Actually, the space stepsDx and Dy were fixed to 1
throughout all the experiments. The time stepDt must be
adjusted for the convergence of the PDEs.

2.3.4 Reduction of computational cost

As mentioned, we obtain a PDM by numerically solvin
the corresponding PDEs using finite-difference meth
~FDMs!. However, these schemes are stable only for v
small time steps, which reduces efficiency and results

large computational cost. For example, in the case of Fig istic
.

10 (1823174) in Sec. 4, it takes about 25 min to obtain
PDM after 60,000 iterations by directly solving PDEs usi
an FDM. This computational time may limit the practic
usage of the proposed method. By a simple and heur

Fig. 4 Illustration of determining a weighting factor for the combina-
tion of two merging criteria.
Fig. 5 Segmentation results of the gradient-, EDM-, and PDM-based methods: (a) original image, (b)
noise-reduced image, (c) ESF obtained from (b), (d) edge image by thresholding (c), (e) inverted EDM
obtained from (d), (f) inverted PDM obtained from (c), (g) final segmentation result based on thresh-
olded gradients proposed by Haris et al., (h) final segmentation result based on the EDM, and (i) final
segmentation result based on the PDM.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 607
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Fig. 6 Comparison between the EDM- and PDM-based methods: (a) original image, (b) inverted
EDM, (c) inverted PDM, (d) watersheds of (b), (e) watersheds of (c), (f) region-merging result of (d),
and (g) region-merging result of (e).
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idea, we reduce the computational time as follows. At
current iteration, not all the pixels have meaningful chan
compared with previous iteration. Therefore, it is not ne
essary to evaluate the PDEs of Eqs.~21!, ~22!, and ~23!
involving the first or second derivatives at all pixel pos
tions or at every iteration. Hence, at each iteration,
evaluate these PDEs only at the pixels with noticea
changes over previous iterations and their 8 neighborh
pixels. When the number of pixels with noticeable chang
is less than a given threshold, the computation of the P
is stopped. In this manner, in Fig. 10 in Sec. 4 we c
reduce the computational time of 25 min to about 6 min.
addition, if we give a more sophisticated initial value of
PDM instead of the opposite of an ESF, we can reduce
computational time much further. We propose a hierarc
cal approach, which first calculates a down-sampled P
with an initial value of the opposite of a down-sampl
ESF and next obtains a final PDM with an initial value
an up-sampled version of the calculated PDM. Using t
approach, we can obtain a PDM of the same quality a
standard FDM after only 20,000 iterations, so the com
tational time is reduced to 3.5 min.
ctronic Imaging / July 2004 / Vol. 13(3)
d

e

a

3 Robust Image Segmentation Based on a PDM

In this section, we introduce the overall procedure of o
region segmentation method along with our new regio
merging criterion. The procedure consists of the followi
four steps:

1. An ESF is computed from an input gray-scale ima
using the method described in Sec. 2.2.

2. A PDM is computed from the ESF by numerical
solving the PDEs introduced in Sec. 2.3.

3. An initial region segmentation result is obtained
applying the watershed transformation to the inver
PDM. We used Vincent and Soille’s watershe
algorithm.5

4. Region merging is carried out with our new mergin
criterion.

There are several region-merging criteria proposed
the literature. For example, Hariset al.18 proposed a dis-
similarity function based on average intensities of two a
jacent regions and their associated areas. In Ref. 19, s
dard deviations of region intensities are considered, as w
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Fig. 7 Other segmentation results of the EDM- and PDM-based methods: (a) original image, (b) ESF
obtained from (a), (c) modified ESF, (d) inverted EDM obtained from (c), (e) watersheds of (d), (f)
region-merging result of (e), (g) inverted PDM obtained from (c), (h) watersheds of (g), and (i) region-
merging result of (h).
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as their means. However, according to our experime
these criteria often produced unsatisfactory merging res
It was observed that the main reason for the failure was
no edge strength information along the common bound
was considered in those criteria. Moreover, in the case
two large adjacent regions, the criterion of Hariset al. was
dominantly affected by their areas regardless of their av
age intensities, which consequently caused poor merg
results.

Motivated by this observation, we developed a new d
similarity function appropriately combining edge streng
and region intensity information. LetRi represent the set o
pixels belonging to a regioni , and letG i andG i j represent
the set of boundary pixels of the regioni and the set of
pixels belonging to the common boundary between the
gions i and j , respectively. If the two regionsi and j are
adjacent to each other andiRi i<iRj i , where iRi repre-
sents the cardinality of a setR, the proposed function mea
suring the dissimilarity between the regionsi and j is given
by

d~ i , j !5k
iG i j i
iG i i

E~G i j !1S 12
iG i j i
iG i i

D um~Ri !2m~Rj !u,

~31!
,
.
t

f

-
g

-

whereE(R) and m(R) are the average edge strength a
intensity values of pixels belonging toR, andk is a scaling
constant. In this equation, the ratior 5iG i j i /iG i i is used as
a weighting factor to combineE(G i j ) and um(Ri)
2m(Rj )u. The reason for this can be well understood
considering Fig. 4, where the regionsB and C have the
same intensities and the common boundary ofA andC is
much longer than that ofA and B. In the case of the re-
gionsA andC ~large r ), the edge strength information o
the common boundary seems more reliable than the re
intensity information. Therefore, when trying to merge r
gions A and C, we should emphasizeE(GAC) more than
um(RA)2m(RC)u, which is the opposite of the case ofA
andB ~small r ). Thus, the ratior is suitable for determin-
ing the weights ofE(G i j ) and um(Ri)2m(Rj )u.

4 Experimental Results

To show the usefulness of our method, we compared
performance of our method with the gradient-based met
proposed by Hariset al.18 and the EDM-based method. Th
method of Hariset al. consists of four stages. The firs
stage is to reduce the noise that corrupts an original im
while preserving its meaningful structures. At the seco
stage, Gaussian gradients are calculated and their ma
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 609
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Fig. 8 Comparison between the gradient- and PDM-based methods: (a) original image, (b) noise-
reduced image, (c) inverted PDM obtained from the ESF of (b), (d) watersheds of gradients (2531
regions), (e) watersheds of thresholded gradients (1639 regions), (f) watersheds of the inverted PDM
(372 regions), (g) region-merging result of (e), and (h) region-merging result of (f).
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tudes below a certain threshold are set to zero. At the n
stage, the resulting thresholded gradient image is fed
the watershed algorithm, which produces an initial segm
tation result. At the final stage, an iterative region-merg
algorithm is applied to the watershed regions to produc
final segmentation result. For a fair comparison, we app
the same noise reduction technique proposed by Hariset al.
to an input image before obtaining the ESF or Gauss
gradients. We also used the same watershed algorithm
posed by Vincent and Soille5 and the same dissimilarity
function of Eq. ~31!, where we normalized the gradien
magnitudes to use the dissimilarity function in the meth
of Haris et al. Further, using the region-growing Euclidea
distance transform algorithm proposed by Cuisenaire,20 we
compute the EDM from the edge image, which is obtain
by thresholding the ESF. Therefore, the largest differe
among the methods used in these experiments is the i
to the watershed transformation. In our method, the PDM
used instead of the thresholded gradient image or the ED

Figure 5 shows the segmentation results of the gradie
EDM-, and PDM-based methods. The ESF of Fig. 5~c! was
obtained by Ambrosio and Tortorelli’s method of Sec. 2
with m53.5 andh53.0, and the PDM of Fig. 5~f! was
obtained from the ESF, witha50.6 andb51.0. The final
segmentation results of Figs. 5~g!, 5~h!, and 5~i! were ob-
ctronic Imaging / July 2004 / Vol. 13(3)
t
o
-

o-

ut

.
-,

tained by iteratively merging adjacent regions whose d
similarity is less than 15.0. Comparing the three figur
one can easily recognize that the proposed method
duced a more accurate and meaningful result with l
noisy segmentation. Note that the part indicated by an
row in Fig. 5~i! clearly shows that our method can provid
well-completed region boundaries even if some parts of
boundary have nearly zero edge strength values. This a
ity to detect meaningful shape boundaries in a gray-sc
image can be regarded as an analogy of the binary im
case shown in Fig. 1. The result of the EDM-based meth
in Fig. 5~h! also produces well-completed region boun
aries as does our method. However, since the EDM is c
puted from the edge image of Fig. 5~d!, which was obtained
by thresholding the ESF of Fig. 5~c!, its segmentation resul
is more likely to be noisy due to spurious edges as wel
more likely to lose useful boundary information of inp
regions@see the arrowed parts in Fig. 5~h!#.

Figure 6 shows the robustness of the PDM to the no
in comparison with the EDM. Figure 6~a! is a synthetic
image corrupted by additive Gaussian noise. The inver
EDM of Fig. 6~b! was obtained by applying the Euclidea
distance transform to the edge image obtained by thre
olding the ESF computed from the input image of Fig. 6~a!.
We can observe from Figs. 6~f! and 6~g! that the PDM-
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Robust region segmentation . . .
based method is less sensitive to noise than the EDM-b
method.

Figure 7 shows the robustness of the PDM-ba
method more clearly. Figure 7~a! shows an image of a rect
angular object with black and white dots along its boun
ary. The ESF of Fig. 7~b! was computed from the image o
Fig. 7~a!. We obtained the image of Fig. 7~c! from the ESF
of Fig. 7~b! by intentionally making holes~5 to 20 pixels
wide! along the object boundary. From Figs. 7~f! and 7~i!,
we can see that our method correctly extracted the rec
gular object in spite of the existence of large holes a
strong noises around the holes, while the EDM-ba
method failed to find the correct region boundary due to
sensitivity to noise.

From the results of Fig. 8, we can see that, although
method of Hariset al. significantly reduces the number o
initial partitions by applying the watershed transformati
to a thresholded gradient image, it still produces a la
number of initial partitions when compared to our metho
In addition, the final segmentation results show that
proposed PDM-based segmentation method provides
gion boundaries that are less noisy and more accurate
the method using thresholded gradients.

Moreover, by utilizing information on the width of re
gions contained in the proposed PDM, our segmenta
method can selectively extract regions of specified wid
as illustrated in Fig. 9. Figure 9~c! was obtained by select
ing watershed regions whose maximum PDM values ra
from 10 to 25 pixels. Figure 9~d! was obtained by itera
tively merging the selected regions.

Other examples of the PDM-based segmentation
shown in Fig. 10. The gradients computed in these gen
images can also be noisy and therefore the gradient-b
or the EDM-based methods using gradient information

Fig. 9 Selective region merging using the PDM information on the
width of regions: (a) original image, (b) watersheds of the inverted
PDM, (c) selected watershed regions of specific widths (10 to 25
pixels), and (d) region-merging result of (c).
d

-

-
n

,

e

e
l
d

present poor results. However, as you see in the experim
tal results, the proposed method shows good segmenta
performance, which is promising and robust to noise.

5 Conclusions

We proposed a new region segmentation method base
the watershed transformation of a PDM. Since the PDM
a regularized version of a EDM and is directly comput
from an ESF, its watershed transformation usually produ
more reliable and less noisy initial segmentation resu
than gradient-based or EDM-based methods, while pres
ing the useful property of the EDM-based method. We a
proposed an efficient region-merging criterion based
edge strengths and region intensities. Through several
periments we showed that the proposed region-merging
terion, along with the PDM-based method, yielded fin
segmentation results superior to conventional methods.

The main drawback of our method is that it requires
long computation time. As represented in Sec. 2.3.4,
attempted to speed up our method with a heuristic idea
an accurate initialization. Nevertheless, the propo
method still has a computational burden. Weickertet al.21

proposed efficient and reliable schemes for nonlinear di
sion filtering using additive operator splitting~AOS!. By
adopting this scheme for a future work, we will try to fu
ther reduce the computational cost of our method at leas
times~a further speed-up by a hundred times is possible
implementing on a parallel computer!, which will lead our
method to various practical usages.

Fig. 10 Other PDM-based segmentation results.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 611
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Jeon, Jang, and Hong
As another future work, we would like to adjust th
PDM parameters according to the characteristics of
given image. Especially, as shown in Fig. 3, it will be ve
nice if we can automatically control the ratio of two co
straint terms—(A) and (B) in Eq. ~11!—by adjustinga and
b according to the details of image contents or applicatio
Further, we can also improve our work by automatica
determining the ESF parametersm andh.

Finally, as a segmentation tool we can adopt one of m
sophisticated methods such as geodesic active conto
Since the proposed method is based on the watershed
rithm, it seems to be a simple method but experimen
results are very promising and well represent its rob
properties. After careful consideration of initializations a
parameter tunings, if we use a more advanced metho
will be a new segmentation approach compared with
proposed method.
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