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mined by its definition. However, this becomes an obstacle

Abstract. We present a robust region segmentation method based when attempting to skeletonize or segment a gray-scale im-

on a pseudo-distance map (PDM) that uses a watershed algorithm

as a segmentation tool. The PDM is a regularized version of a Eu-
clidean distance map (EDM) directly computed from the edge-
strength function (ESF) of an input image without edge detection,
which involves a thresholding operation. This unavoidably causes
useful region boundary information loss from the original image. We
show that applying the watershed algorithm to the PDM significantly
reduces oversegmentation, and the final segmentation results ob-
tained by a simple region-merging process are more accurate and
meaningful and less sensitive to noise than those of the gradient-
based or EDM-based methods. We also propose a simple and effi-
cient region-merging criterion that considers both boundary
strengths and inner intensities of regions to be merged. We tested
and verified the robustness of our method with a variety of synthetic
and real images. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1758952]

age with the methods using the EDM, since no clear bound-
ary of a shape or a region is defined in gray-scale images. If
one tries to skeletonize or segment gray-scale images from
the EDM, the boundaries of the regions should be extracted
directly with edge detection techniques. However, since
edge detection always involves a thresholding operation, it
is unavoidable that some useful information will be lost
from the original image, which seems to be necessary to
extract a reliable skeleton or to accurately segment regions.
Some spurious edges resulting from the thresholding opera-
tion may change the shapes of skeletons and cause noisy
segmented regions. Moreover, these methods are usually

sensitive to a change in the thresholding values of the edge
detection process.
1 Introduction In previous worké we proposed a new tool, called a

A Euclidean distance magEDM) is an image where each pseudo-distance .ma(tPDM),'to d|rectly extract skeletpns
point is assigned a Euclidean distance to the nearest shapom gray-scale images without region segmentation or
boundary point. Instead of an original image, the EDM ob- €dge detection. In this paper, we present a robust region
tained is commonly used in vision applications, such asSegmentation method based on the PDM using a watershed
skeletonization and segmentation. For example, since@lgorithm as a segmentation technique and show that our
Blum’s proposaf: a medial axis is generally accepted as a method provides segmentation results superior to conven-
definition of a skeleton in the literature, and as a skeleton-tional methods. A typical approach for segmenting a gray-
ization method, the medial axis is extrackdy detecting ~ Scale image with watershed transformation is to make use
ridges of the EDM. In the applications in Refs. 4 and 5, for Of its gradient image as an input to the transformation,
region segmentation the watershed transformation was apSince high gradients constitute watershed lines that corre-
plied to the EDM constructed from an edge image, since it spond to the region boundaries of the gray-scale image. In
has the characteristic of detecting meaningful boundariesOur proposed method, however, we utilize the PDM as an
by separating connected or overlapping blobs when applied"Put to the Watersheq algorithm. This maintains the advan-
to the corresponding EDM, as shown in Fig. 1. tage of the EDM,.wh[ch can segment mganlngful bound-
The common requirement of the preceding approaches ifies, as depicted in Fig. 1, while overcoming the shortcom-
that the boundary contour of a shape must be determinedngds of the EDM caused by the thresholding operation.

before its skeletonization or segmentation. In the case of a A PDM can be regarded as a relaxed and regularized
binary image, the requirement is trivial because the bound-version of an EDM. While the EDM is obtained from an

ary contour of the binary image is always clearly deter- €dge image, the PDM is directly computed from the edge-
strength functionESPH of a given gray-scale image with-
out thresholding it. An ESF is a smooth function that ap-
- , _ _ proaches the value of one at the shape boundary and decays
Paper 03102 received Jul. 16, 2003; revised manuscript received Dec. 2, 2003; ac—rapidly to zero while receding from the boundary. The

cepted for publication Dec. 22, 2003. )
1017-9909/2004/$15.00 © 2004 SPIE and IS&T. value of the PDM is almost equal to zero where edge
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2 ESF and PDM

2.1 EDM versus PDM

An EDM is defined as an image where each pixel is as-
signed the value of the distance to the nearest object bound-
ary pixel. We developed a PDM as a regularized version of
the conventional EDM.

Note the connection between the EDM and the eikonal
equation. Consider a curve evolving with the PDE

&C_
E_F(Xiy)Na (1)

whereC is a parameterized representation of the culNe,
is the unit inward(or outward normal to the curve, and
F(F>0) is a speed function which depends only on the
position (x,y). If T(x,y) represents the time at which the
curve crosses a poini(y), it can be shown that(x,y)
satisfies the eikonal equatith

Segmented cells

Fig. 1 Segmentation of overlapping cells by applying the watershed
transformation to the inverted distance map.®

IVT|F=1, T=0 on T, 2)

wherel is the initial location of the curve. The connection
between the EDM and the eikonal equation is the fact that

strength is relatively large, and the function has nearly con-the EDM can be interpreted as the solutibrof Eq. (2),
stant slopes at the points with small edge strength, except ay/ith F equal to 1 ifI" corresponds to the object boundary.
the positions where two opposite slopes meet, which actu-There are several methods for solving ER), which in-
ally correspond to the skeleton of the input image. Given an¢!ude, for example, Sethian's fast marching methbtbw-
ESF, the PDM is obtained by numerically solving the par- ever, if the boundary location is not precisely given, and we

tial differential equationgPDES9 that are derived from the know only the strength of the boundary at each pixel loca-

. tion, can we compute something similar Toin such a
energy functlonal WE propose. Qur method completgly restricted situation? The development of a PDM is moti-
avoids performing the edge detgcnon process by replacing,ateq by this question.
the edge map and the EDM with the ESF and the PDM,
respectively. Therefore, the proposed PDM-based method
fully utilizes the edge strength information of the given 2.2 ESF
image and contains the regularization effect by the varia- As mentioned in Sec. 1, before computing the PDM, we
tional formulation. Hence, the application of watershed must first obtain the ESF from a given gray-scale image. In
transformation to the inverted PDM significantly reduces this subsection, we introduce a variety of ESFs available.
the oversegmentation problem caused by noisy gradients ofrhe simplest form of a ESk,, would be
spurious edges, and usually produces more accurate and
less noisy initial segmentation results than the gradient- orv =g(||[VG,*1,|), ©)
EDM-based methods.

In addition, we propose a simple and efficient region- where G, is a Gaussian kernel of size, |, is an input
merging criterion that considers both boundary strengthsgray-scale image, ang is a normalizing function that in-
and inner intensities of the regions to be merged. Throughcreases monotonically and madjis=] to [0,1]. The param-
several experiments, we show that our region-mergingetero controls the overall scale of the ESF. It can be shown
method, along with our initial segmentation method, gives that convolving an image with a Gaussian kernel is equiva-
robust and reliable final segmentation results. lent to performing isotropic linear diffusion with an initial

This paper is organized as follows. Section 2, describessState set td,. Perona and Malik proposed an anisotropic
how to obtain the ESF and the PDM, including some ideasdiffusion equation for edge-preserving smoothing:
for faster computation of the PDM. In Sec. 3, the overall .
procedure of the proposed method is provided, including!t=V-c([VI[)VI with =1, at t=0, 4)
our new region-merging criterion. Experimental results are
shown in Sec. 4, where we compare the performance of ouwherec is called a conductance function. They suggested
method with those of the conventional gradient- or EDM- two conductance functions:
based methods and show the robustness of the PDM-based

IIVI(x,y,t)IIT and

method. Finally, conclusions and discussions are given in

Sec. 5. c(x,y,t)= exr{ Tk 5)
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1
Y= TV Iy DIPIK?

(6)

In short,K plays the role of a threshold for gradients, that
is, if the gradient at X,y,t) is larger than the predefined
value ofK then the conductance(x,y,t) decays rapidly,
the image valué(x,y,t) is less smoothed, and its gradient
information is preserved. Therefore, the lardgemwe use,
the more gradient information of the given image we lose.
The ESF ofi (x,y,t) can be computed by negating the role
of the conductance function and given by
v=1-c(x,y,t). (7)
Other anisotropic diffusion equations can be found in Refs.
10 and 11.

Ambrosio and Tortorell? proposed an ESF that is ob-
tained by minimizing the functional

E(10)= [ 1= TP+ 50 -107+ S0

U2

+ %5 dx dy, (8

wherel is an input imagel is its smoothed image, and
is an ESF. The two functiorisandv that minimize Eq(8)
can be computed using the variational approgcihich
gives rise to the following coupled PDEs:

It=V-(1—v)2VI—£(I—IO), ©)

v 2u
vi=V——+—(1-v)|VI[%. (10)

Note that the larger thg/», the more the details of the ESF

E(f)= f a2 41+ (b= f.)' ]+ Bla®~f) dx,

(4 (B)

11

wherea, B, a, andb are positive constants, arfdis the
PDM to be computed. The functional works as followsy If
is small, the minimization oE will be dominated by the
term (B). This means that the slope bfwill approacha or
—a. If v is large, the termA&) will also affect the minimi-
zation of E and the constraints ohwill work; that is, the
magnitudes of andf, should become zero arfg, should
approach the positive constant These constraints giviea
local minima of nearly zero at positions whereis large.
Therefore, the overall shape bivill become similar to that
of an EDM after the minimization oE.

The functionf that minimizes the functiondt can be
computed by the variational method if the initial form fof
is appropriately given. In the variational method, PDEs cor-
responding to a given energy functional are obtained using
the calculus of variations and the PDEs are discretized to
compute their numerical solutions. Note tliatin Eq. (11)
causes the fourth-order derivative foin the corresponding
PDE, which tends to make the PDE noise sensitive. To
avoid the use of,, we introduce a new functiog, which
approximate®® f,, and incorporate it with Eq11):

E(f,g):J “U[f2+ff+(b—gx)2]+/3(a2—f§)2

+(g—f,)2dx. (12)
Equation(12) gives rise to two PDEs:
fi=al(vf) —vf]l+2Bf(3f;—a) + (=g, (13
9t=a[(vgx)x—buvy]+ (fx—9). (14

We implemented the preceding PDEs using central
finite-difference approximations shown in Sec. 2.3.3 and
solved them with the initial value df set to 1-v. Unfor-

are smoothed. For experiments, we adopted this method{unately, according to our experiments, the convergence of
which is more sophisticated than the first two methods the PDE in Eq.(13) was inadequate; that is, it was very

based on a Gaussian kernel and a conductance function oflow and often stuck to unwanted local extrema. To speed
an anisotropic diffusion at the cost of additional computa- up the convergence and avoid falling into the local extrema,

tional burden. Of course, readers can adopt any othemnwe added a new term to E¢L3):

method$**® for obtaining the ESFs.

2.3 PDM

In this subsection, we introduce how to compute a PDM
from a given ESF.

2.3.1 One-dimensional formulation

We begin by introducing an energy functional that will be
minimized to obtain a PDM in one dimension. The func-
tional is extended to the 2-D case in the next subsection
Assuming that an ESE(X) is given, which ranges from 0
to 1 and monotonically increases as an edge lheécomes
stronger, the functional is given by

604 / Journal of Electronic Imaging / July 2004 / Vol. 13(3)

fr=al (vf)x—vfl+2BF (32— a2)+ (f— 0y

+ydfi, (15
wherey is a positive constant and
1 if {f<0} or {f=0[f,,>0v~0},
{f<0} or {fi=0fx } 19

- 0 otherwise.

During the iterative computation df, the new term acti-

vates only wherf(x) has a negative value & or has a

local minimum wherey is very small. The two conditions,
in fact, illustrate cases that are impermissible during the
formulation of a PDM. The new term causégo escape
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Fig. 2 (a) Input signal, (b) ESF v, (c) initial f=1—v, and (d) f after 60,000 iterations.

from them by smoothing it out where they occur. Our ac- At first glance, our method seems to involve many pa-

tual implementation ofp is as follows: rameters to be adjusted. However, considering the role of
each parameter, one can see that the parametess e,
1 if {f<e} or {|g|<e;,0,>€3,0<es}, €3, €4, &, andb are independent of the given ESFs. There-
“lo otherwise, (17) fore, once the parameter values selected are proven to be

suitable for convergence, they are, ipso facto, also suitable
where €;<0,e,>0,e5>0,e,>0, and their absolute values for other ESFs.
are very small. Note that just as in the case of the ESF, we can control

An iilustrative example is given in Fig. 2. The input the smoothness of the resulting PDM by adjustingnd 3.

signal of Fig. 2a) has two step edges at-30 and 90. The As shown in Fig. 3, this characteristic is verified by detect-
ESF of Fig. 2b) was obtained from the input signal using N9 ridges (they actually correspond to skeletons of the
Ambrosio and Tortorelli's method, whose details are given 91Ven image from PDMSs with a different smoothness. It is
in Sec. 2.2. The result of Fig(@ was obtained by setting ©PVious from the results that, a8 becomes larger, more
a=0.1, B=1.0, a=0.35, b=3a, y=3.0, e;=—0.1, ¢, detailed structures appear, but the resulting ridges become
=0.05, €3=0.01, ,=0.05, andAt=0.1. Note that we can O"~>'¢""
compute the approximate distance between the two edges
from the value off at the center. In Fig. (@), f is equal to ) ) )
10.35 at the center, from which the distance is computed by2-3-2  Extension to two dimensions

10.356X2=59.14, which is approximately equal to the The extension of Eq.12) to two dimensions is straightfor-
true distance 60. ward:

Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 605
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Fig. 3 Ridges of PDMs obtained from the input image of Fig. 10 (shown in Sec. 4) with different values
of a and fixed value of B=1.5: (a) «=0.02 and (b) «=0.2.

E(r.gm= [ o] 124 124 67+ (b-g9%+ 3 (g, 2
+(b—hy)?|+B(a~ | V{[*)?+(g—1,)?
+(h—fy)? dxdy, (18)

where

g~f, and h~=f,. (19)

Consequently,

fu~0x,fyy~hy, and fxy~%(9y+hx)_ (20)

The corresponding PDEs are
fi=a(V-oVi—vf)+28[(|Vf]|?—a?)V2f+2(f2f,,
+2f, 8 fyy + 12f) 1+ (V2E—g,—hy), (21)
0i=a{2[v(gx—b) [x+[v(gy+holyt +2(fx—9), (22
he=a{[v(gy+h) ]+ 2[v(hy—b)]}+2(fy—h). (23

We also added a new tergnpV2f to Eq.(21) for faster and
more reliable convergence, wheteis given by

606 / Journal of Electronic Imaging / July 2004 / Vol. 13(3)

1 if {f<e} or {|de(H)|<e,,tracéH)>e€;,v0 <€y}
|0 otherwise,

(24)
wheree; <0, €,>0, €53>0, €,>0, and their absolute values
are very small. The matriH is a Hessian matrix of,

which is given by

N 9x 1/2(gy+hy)
1/2(gy+hy) hy

fyx |
fyy f

Xy

(29

Xy yy

The condition{|detH)|<e,, traceH)> €3} in Eq. (24) is
provided to detect valley§.e., local minimum of f. Note
that the two eigenvalues; and N, (J\{|<|\,|) of the
Hessian matrix off(x,y) correspond, respectively, to the
minimum and maximum second-order directional deriva-
tives (i.e., curvaturesof f at (x,y). Therefore, at the val-
leys of f, the following condition is usually satisfied:

defH)=X\;-Ao~0 and traceH)=A;+A,~\,>0. (26

2.3.3 Numerical implementation

The PDEs introduced in this paper are numerically solved
using the following finite-difference approximatiohs:
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Jof 1

E%E[f(HAI)—f(t)], (27)
of 1

a—xmm[f(H—Ax)—f(x—Ax)], (28
P 1

Wwm[f(x+Ax)—2f(x)+f(x—Ax)], (29
5*f

m% M[f(x+ AX,y+Ay)—f(Xx—Ax,y+Ay)]

—f(x+Ax,y—Ay)+f(x—Ax,y—Ay)]. (30

Actually, the space stepAx and Ay were fixed to 1
throughout all the experiments. The time st&p must be
adjusted for the convergence of the PDEs.

2.3.4 Reduction of computational cost

As mentioned, we obtain a PDM by numerically solving

Region C

Region B

Region A

Fig. 4 lllustration of determining a weighting factor for the combina-
tion of two merging criteria.

the corresponding PDEs using finite-difference methods10 (182<174) in Sec. 4, it takes about 25 min to obtain a
(FDMs). However, these schemes are stable only for very PDM after 60,000 iterations by directly solving PDEs using
small time steps, which reduces efficiency and results in aan FDM. This computational time may limit the practical
large computational cost. For example, in the case of Fig.usage of the proposed method. By a simple and heuristic

(g

=y - -

(i)

Fig. 5 Segmentation results of the gradient-, EDM-, and PDM-based methods: (a) original image, (b)
noise-reduced image, (c) ESF obtained from (b), (d) edge image by thresholding (c), (e) inverted EDM
obtained from (d), (f) inverted PDM obtained from (c), (g) final segmentation result based on thresh-
olded gradients proposed by Haris et al., (h) final segmentation result based on the EDM, and (i) final

segmentation result based on the PDM.
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Fig. 6 Comparison between the EDM- and PDM-based methods: (a) original image, (b) inverted
EDM, (c) inverted PDM, (d) watersheds of (b), (e) watersheds of (c), (f) region-merging result of (d),
and (g) region-merging result of (e).

idea, we reduce the computational time as follows. At the 3 Robust Image Segmentation Based on a PDM

current iteration, not all the pixels have meaningful changes), this section, we introduce the overall procedure of our
compared with previous iteration. Therefore, it is not nec- region segmentation method along with our new region-

essary to evaluate the PDEs of E¢81), (22), and(23)  merging criterion. The procedure consists of the following
involving the first or second derivatives at all pixel posi- four steps:

tions or at every iteration. Hence, at each iteration, we
evaluate these PDEs only at the pixels with noticeable 1. An ESF is computed from an input gray-scale image

changes over previous iterations and their 8 neighborhood using the method described in Sec. 2.2.

pixels. When the number of pixels with noticeable changes 2. A PDM is computed from the ESF by numerically

is less than a given threshold, the computation of the PDM solving the PDEs introduced in Sec. 2.3.

is stopped. In this manner, in Fig. 10 in Sec. 4 we can 3 Ap initial region segmentation result is obtained by
reduce the computational time of 25 min to about 6 min. In applying the watershed transformation to the inverted
addition, if we give a more sophisticated initial value of a PDM. We used Vincent and Soille’s watershed

PDM instead of the opposite of an ESF, we can reduce the algorithm®

computational time much further. We propose a hierarchi-
cal approach, which first calculates a down-sampled PDM
with an initial value of the opposite of a down-sampled
ESF and next obtains a final PDM with an initial value of There are several region-merging criteria proposed in
an up-sampled version of the calculated PDM. Using this the literature. For example, Harit al*® proposed a dis-
approach, we can obtain a PDM of the same quality as asimilarity function based on average intensities of two ad-
standard FDM after only 20,000 iterations, so the compu-jacent regions and their associated areas. In Ref. 19, stan-
tational time is reduced to 3.5 min. dard deviations of region intensities are considered, as well

4. Region merging is carried out with our new merging
criterion.

608 / Journal of Electronic Imaging / July 2004 / Vol. 13(3)
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(i)

(a)
(d)
(g

Fig. 7 Other segmentation results of the EDM- and PDM-based methods: (a) original image, (b) ESF
obtained from (a), (c) modified ESF, (d) inverted EDM obtained from (c), (e) watersheds of (d), (f)
region-merging result of (e), (g) inverted PDM obtained from (c), (h) watersheds of (g), and (i) region-
merging result of (h).

(h)

as their means. However, according to our experimentswhere E(R) and u(R) are the average edge strength and
these criteria often produce(_JI unsatisfactory merging resultsintensity values of pixels belonging ®, and« is a scaling
It was observed that the main reason for the failure was thaiconstant. In this equation, the ratie- T [I/]T]| is used as
no edge strength information along the common boundary, weighting factor to combineE(T;)) and |u(R;)

. . . . . ij I
was considered in those criteria. Moreover, in the case Of_M(Rj)|- The reason for this can be well understood by

two large adjacent regions, the criterion of Hagtsal. was L1 . .
dominantly affected by their areas regardless of their aver—COnSIderIng Fig. 4, where the regioBsand C have the

age intensities, which consequently caused poor mergings@Me intensities and the common boundarAdndC is
results. much longer than that ok andB. In the case of the re-

Motivated by this observation, we developed a new dis- gionsA andC (larger), the edge strength information on
similarity function appropriately combining edge strength the common boundary seems more reliable than the region
and region intensity information. L&, represent the set of  intensity information. Therefore, when trying to merge re-
pixels belonging to a region and letl’; andT;; represent ~ gionsA and C, we should emphasizE(I'ac) more than
the set of boundary pixels of the regionand the set of  |#(Ra)—(Rc)|, which is the opposite of the case Af
pixels belonging to the common boundary between the re-andB (smallr). Thus, the ratia is suitable for determin-
gionsi andj, respectively. If the two regionsandj are  ing the weights oE(T';;) and|u(R;) — u(R))|.
adjacent to each other afi®|<||R;|, where|R| repre-
sents the cardinality of a s&, the proposed function mea- 4 Experimental Results

suring the dissimilarity between the regidnandj is given To show the usefulness of our method, we compared the
by performance of our method with the gradient-based method
proposed by Harist al'® and the EDM-based method. The
I | I | method of Hariset al. consists of four stages. The first
PN L] - i N ) stage is to reduce the noise that corrupts an original image
o)) = (Tl E(F”)+(1 (Tl )"“(R') (R, while preserving its meaningful structures. At the second
(3D stage, Gaussian gradients are calculated and their magni-

Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 609
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Fig. 8 Comparison between the gradient- and PDM-based methods: (a) original image, (b) noise-
reduced image, (c) inverted PDM obtained from the ESF of (b), (d) watersheds of gradients (2531
regions), (e) watersheds of thresholded gradients (1639 regions), (f) watersheds of the inverted PDM
(372 regions), (g) region-merging result of (e), and (h) region-merging result of (f).

tudes below a certain threshold are set to zero. At the nextained by iteratively merging adjacent regions whose dis-
stage, the resulting thresholded gradient image is fed intosimilarity is less than 15.0. Comparing the three figures,
the watershed algorithm, which produces an initial segmen-one can easily recognize that the proposed method pro-
tation result. At the final stage, an iterative region-merging duced a more accurate and meaningful result with less
algorithm is applied to the watershed regions to produce anoisy segmentation. Note that the part indicated by an ar-
final segmentation result. For a fair comparison, we appliedrow in Fig. 5i) clearly shows that our method can provide
the same noise reduction technique proposed by léaias well-completed region boundaries even if some parts of the
to an input image before obtaining the ESF or Gaussianboundary have nearly zero edge strength values. This abil-
gradients. We also used the same watershed algorithm proity to detect meaningful shape boundaries in a gray-scale
posed by Vincent and Soifleand the same dissimilarity image can be regarded as an analogy of the binary image
function of Eq.(31), where we normalized the gradient case shown in Fig. 1. The result of the EDM-based method
magnitudes to use the dissimilarity function in the method in Fig. 5h) also produces well-completed region bound-
of Haris et al. Further, using the region-growing Euclidean aries as does our method. However, since the EDM is com-
distance transform algorithm proposed by Cuiserfiree puted from the edge image of Figid, which was obtained
compute the EDM from the edge image, which is obtained by thresholding the ESF of Fig(&, its segmentation result
by thresholding the ESF. Therefore, the largest differenceis more likely to be noisy due to spurious edges as well as
among the methods used in these experiments is the inpuinore likely to lose useful boundary information of input
to the watershed transformation. In our method, the PDM isregions[see the arrowed parts in Fig(H3].
used instead of the thresholded gradient image or the EDM.  Figure 6 shows the robustness of the PDM to the noise
Figure 5 shows the segmentation results of the gradient-jin comparison with the EDM. Figure(& is a synthetic
EDM-, and PDM-based methods. The ESF of Fig)Svas  image corrupted by additive Gaussian noise. The inverted
obtained by Ambrosio and Tortorelli's method of Sec. 2.2, EDM of F|g &b) was obtained by app|y|ng the Euclidean
with ©=3.5 and7=3.0, and the PDM of Fig.  was distance transform to the edge image obtained by thresh-
obtained from the ESF, witk=0.6 andB=1.0. The final  olding the ESF computed from the input image of Fit)6
segmentation results of Figs(gd, 5(h), and i) were ob-  We can observe from Figs.(f§ and &g) that the PDM-
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{€} id)

Fig. 9 Selective region merging using the PDM information on the
width of regions: (a) original image, (b) watersheds of the inverted
PDM, (c) selected watershed regions of specific widths (10 to 25
pixels), and (d) region-merging result of (c).

based method is less sensitive to noise than the EDM-basec
method.
Figure 7 shows the robustness of the PDM-based Fig. 10 Other PDM-based segmentation results.
method more clearly. Figurg@ shows an image of a rect-
angular object with black and white dots along its bound- ) )
ary. The ESF of Fig. (b) was computed from the image of Present poor results. However, as you see in the experimen-
Fig. 7(a). We obtained the image of Fig(c from the ESF tal results, the pr_opo_sed me_thod shows good segmentation
of Fig. 7(b) by intentionally making holeg5 to 20 pixels ~ Performance, which is promising and robust to noise.
wide) along the object boundary. From Figgf)7and 7i), .
we can see that our method correctly extracted the rectan® Conclusions
gular object in spite of the existence of large holes and We proposed a new region segmentation method based on
strong noises around the holes, while the EDM-basedthe watershed transformation of a PDM. Since the PDM is
method failed to find the correct region boundary due to its a regularized version of a EDM and is directly computed
sensitivity to noise. from an ESF, its watershed transformation usually produces
From the results of Fig. 8, we can see that, although themore reliable and less noisy initial segmentation results
method of Hariset al. significantly reduces the number of than gradient-based or EDM-based methods, while preserv-
initial partitions by applying the watershed transformation ing the useful property of the EDM-based method. We also
to a thresholded gradient image, it still produces a largeproposed an efficient region-merging criterion based on
number of initial partitions when compared to our method. edge strengths and region intensities. Through several ex-
In addition, the final segmentation results show that the periments we showed that the proposed region-merging cri-
proposed PDM-based segmentation method provides reterion, along with the PDM-based method, yielded final
gion boundaries that are less noisy and more accurate thasegmentation results superior to conventional methods.
the method using thresholded gradients. The main drawback of our method is that it requires a
Moreover, by utilizing information on the width of re- long computation time. As represented in Sec. 2.3.4, we
gions contained in the proposed PDM, our segmentationattempted to speed up our method with a heuristic idea and
method can selectively extract regions of specified width, an accurate initialization. Nevertheless, the proposed
as illustrated in Fig. 9. Figure(6) was obtained by select- method still has a computational burden. Weickesral >
ing watershed regions whose maximum PDM values rangeproposed efficient and reliable schemes for nonlinear diffu-
from 10 to 25 pixels. Figure (8) was obtained by itera-  sion filtering using additive operator splittinghOS). By
tively merging the selected regions. adopting this scheme for a future work, we will try to fur-
Other examples of the PDM-based segmentation arether reduce the computational cost of our method at least 10
shown in Fig. 10. The gradients computed in these generatimes(a further speed-up by a hundred times is possible by
images can also be noisy and therefore the gradient-basednplementing on a parallel compujewhich will lead our
or the EDM-based methods using gradient information canmethod to various practical usages.
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given image. Especially, as shown in Fig. 3, it will be very 15,

Jeon, Jang, and Hong

As another future work, we would like to adjust the 14. J. Shah, A common framework for curve evolution, segmentation
PDM parameters according to the characteristics of the

nice if we can automatically control the ratio of two con-
straint terms—_Q) and @) in Eq. (11)—by adjustinga and

B

according to the details of image contents or applications.

Further, we can also improve our work by automatically
determining the ESF parameteusand ».

Finally, as a segmentation tool we can adopt one of more

16.

and anisotropic diffusion,” irProc. Computer Vision and Pattern Rec-
ognition Vol. 1, pp. 136-142, IEEE, Piscataway, K.P96.

S. Teboul, L. Blanc-Faud, G. Aubert, and M. Barlaud, “Variational
approach for edge-preserving regularization using coupled PDE’s,”
IEEE Trans. Image Procesg(3), 387-397(1998.

M. Proesmans, E. Pauwels, and L. van Gool, “Coupled geometry-
driven diffusion equations for low-level vision,” iGeometry-Driven
Diffusion in Computer VisionB. M. ter Haar Romeny, Ed., pp. 191—
228, Kluwer Academid1994.

17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

sophisticated methods such as geodesic active contours.

Since the proposed method is based on the watershed algol-8'

rit

results are very promising and well represent its robust19-

pr

parameter tunings, if we use a more advanced method, ito.

wi
pr

hm, it seems to be a simple method but experimental
operties. After careful consideration of initializations and

Il be a new segmentation approach compared with the
oposed method.
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