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Abstract 
In this paper, we propose a new recursive framework for 
camera resectioning and apply it to off-line video-based 
augmented reality. Our algorithm is based on an 
unscented particle filter, which deals with non-linear 
dynamic systems without local linearization, and leads to 
more accurate results than other non-linear filters. The 
proposed approach has some desirable properties. It does 
not rely on closed-form solutions. It is fairly accurate 
and is easy to implement as compared with other non-
linear approaches. As a result, the proposed algorithm 
outperforms the standard camera resectioning algorithm. 
We verify this through experimentation using real image 
sequences. 
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1. Introduction 
Computing a camera matrix from known or 
reconstructed 3D structure and corresponding image 
locations is called a linear camera calibration or camera 
resectioning in the vision community [1, 4, 15, 18]. 
Camera resectioning frequently utilized in frame-
sampling based applications, e.g. structure and motion 
analysis [7, 11, 15, 20], and off-line video-based 
augmented reality [21, 23] etc. The frame-sampling 
based approaches are mainly composed of two parts, the 
Euclidean reconstruction from key-frames and the 
camera motion estimation of all frames from the 
reconstructed 3D structure, i.e. camera resectioning. 

For projective camera resectioning, linear least-squares 
methods give reasonable solutions if data are 
appropriately preprocessed [4]. However, in the 
Euclidean case, although we have closed-form solutions 
for camera resectioning [1, 18], the intrinsic parameters 
computed by these methods do not always satisfy the 
intrinsic parameter constraints, i.e. zero skew, unit 
aspect ratio and fixed optical center. A general remedy 
for this problem is to fix the intrinsic parameters with 
known values and then re-estimate the unfixed intrinsic 
and extrinsic parameters for the consistency of 
estimation results. For this purpose, we should minimize 
a non-linear error cost function (e.g. mean squares re-

projection error) by using ite
techniques [18]. However, this appr
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3. Problem Formulation Nister [16] and B. Georgescu et al. [20]. Our system is 
composed of two main parts; Euclidean structure 
estimation from key-frames and motion estimation by 
camera resectioning. 

We adopt a dynamic state-space model with parameters 
to represent the camera motion. The global rotation 

( )3SOΩ∈ and the global translation T of the camera 
are defined as the system states, and written by  2.2. Auto-Calibration and Euclidean Structure 

Reconstruction from Key-Frames 
{ },T= Ωx .                                  (1) In our system, selecting and tracking image features 

from image sequences is conducted by the Kanade-
Lucas-Tomasi algorithm [2]. To automatically select 
key-frames we use the frame decimation algorithm [16] 
or key-frame selection algorithms [21, 23]. In our 
experiments we manually select key-frames. From the 
first three key-frames, we reconstruct the initial 3D 
structure and three projective cameras by using the 
trifocal tensor constraint [15]. We sequentially merge the 
next key-frame to the first three key-frames using the 
reconstructed projective structure. After completing the 
projective reconstruction from key-frames in image 
sequences, we minimize the estimation error with the 
projective bundle adjustment, and then we upgrade the 
projective reconstruction to the Euclidean reconstruction 
by using the auto-calibration technique. We apply the 
Euclidean bundle adjustment to minimize the calibration 
error. Refer to Pollefeys et al. [10, 11] and Triggs et al. 
[12] for details on auto-calibration and bundle-
adjustment, respectively. 

Associated to each motion Ω , , there are time-
varying parameters, i.e. angular velocity 

T
ω , linear 

velocity , angular acceleration V ω� , and linear 
acceleration V . We use θ as the notation for the system 
parameters, and define as 

�

{ }1, , , , , , , , , N
Vf V V X Xωω ω= Σ Σθ ��

�� …                (2) 

where f is a focal length, ωΣ � ,  static parameters for 

the covariance matrix of 
VΣ �

ω� , , respectively, and V�
1, , NX X…  3D points of the static scene reconstructed in 

the first step of our image sequence analysis system. The 
time evolution model for the system states and the 
system parameters is given by  

1tf + tf=                                                 (3) 
 ( ) ( )

1          1, ,i i
t tX X i+ = = … N

)
tV

                   (4) 

                            (5)  ( ) ( ˆ
1 3log t t

t SO e eω Ω
+Ω =2.3. 3D Motion Estimation of Moving Camera by 

Camera Resectioning ˆ
1

t
t tT e Tω
+ = +                                       (6)  

From the 2D correspondences and the 3D structure 
computed in the first step, we estimate the 3D motion of 
moving camera in all frames. This procedure is called 
linear calibration or camera resectioning. The estimated 
camera parameters are used in the off-line augmented 
reality system developed in our laboratory.  

(1       0,t t t t N )ωω ω ω ω+ = + Σ �� � ∼             (7)  

(1       0,t t t VV V V V N+ )= + Σ �
� � ∼               (8) 

 
where ω̂  is the skew symmetric matrix of angular 
velocity ω , and  the inverse of Rodrigues' 

formula [19]. The measurement equation is given by 
( )3logSO

Linear and non-linear estimation techniques for camera 
intrinsic and extrinsic parameters have been introduced 
in many vision materials [1, 15, 18]. Most of 
conventional approaches are based on linear least 
squares methods. However, linear solutions are not 
adequate for the augmented reality system where 
estimated cameras should satisfy some constraints, i.e. 
zero skew, unit aspect ratio, and fixed optical center. In 
the previous work this problem has never been directly 
considered [21, 23]. A general solution for this problem 
is to fix the intrinsic parameters with known values and 
then re-estimate the unfixed intrinsic parameters and 
extrinsic parameters. For the consistency of the 
estimation results, we should reduce the estimation error 
arising from the blind parameter fixing by using iterative 
optimization techniques [18]. However, this approach 
has a drawback that it works only when the linear 
solutions are close to true ones. Our camera resectioning 
algorithm solves this problem by using the state space 
model and the recursive estimation.  

( ) (1 1, , , , ,T
t t t tn tn t tx y x y ) t= =y h θ n� … +x

)

        (9) 

where  the measurement noise  and (0,
tt N Σnn ∼ ( )⋅h  

is the 2  vector of corresponding non-linear equation 
of the perspective camera projection, defined by 

N
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3

t

               (10) 

where ( ) ( )ti i
t tX e X TΩ′ = +  and  [ ]   th element. In our 

problem formulation, we assume that the camera 
intrinsic parameters are fixed with known values. 
Contrary to the conventional approaches, this 
assumption makes no error in our recursive camera 
resectioning algorithm. 
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( )( ) ( )
| 1 1,        1, , 2 1i i

t t t tX X i− − n= =g θ … +               (14) 4. Recursive Camera Resectioning 

4.1. Propagating Mean and Covariance of 
Camera System State by Unscented Kalman 
Filter 

2 1
( ) ( )

| 1 | 1
0

n
i i

t t t t
i

W X
+

− −
=

= ∑x                                          (15) 

( )( )
2 1

( ) ( ) ( )
| 1 | 1 | 1 | 1 | 1

0

n Txx i i i
t t t t t t t t t t

i
W X X

+

− − − −
=

Σ = − −∑ x x −    (16) 
Unscented transform [6] is a method for propagating 
mean and covariance with second order accuracy in a 
nonlinear system. This transform was applied to the 
extended Kalman filter and called as unscented Kalman 
filter (UKF) by E. A. Wan et al. [14]. We include Fig. 2 
to visually illustrate the idea of the unscented transform 
and to support the understanding the UKF-based part of 
our algorithm. In this algorithm, the mean and the 
covariance of the n -dimensional state is represented 
with 2  weighted samples, called sigma points. n +

( )( )
| 1 | 1,i

t t t t t tY X− −= +h θ n                                    (17) 
2 1

( ) ( )
| 1 | 1

0

n
i i

t t t t
i

W Y
+

− −
=

= ∑y                                           (18) 

 
Update the predicted mean and the predicted covariance 
by innovation information:  

 ( )( )
2 1

( ) ( ) ( )
| 1 | 1 | 1 | 1 | 1

0

n Tyy i i i
t t t t t t t t t t

i
W Y Y

+

− − − −
=

Σ = − −∑ y y −     (19) 
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Fig. 2 Mean and covariance propagation: non-linear 
transform (left), extended Kalman filter (center), 

unscented transform (right) 
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+
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( ) 1

| 1 | 1
xy yy

t t t t tK
−

− −= Σ Σ                                        (21) 

 ( )| 1 | 1
UKF
t t t t t t tK−= + −x x y y −

t

                           (22) 

| 1 | 1
UKF xx yy T
t t t t t tK K− −Σ = Σ − Σ                                  (23) 

This procedure enables to generate samples from the 
predicted modes of the proposal distribution, which is 
called UKF proposal distribution [16]. 

4.2. Bayesian Filtering of Camera System State 
by Unscented Particle Filter with Independent 
Metropolis-Hastings Chain 

Through UKF algorithm we predict the mean UKF
tx  and 

covariance     at time t  of the camera system state 
 in (1). The UKF-based prediction algorithm can be 

described in the following way: 

UKF
tΣ

tx

Calculate sigma points { } of the 

camera system state using the mean and the covariance 
at time : 

2 1n+ (0) (2 1)
1 1, , n

t tX X +
− −…

1t −
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Independent
Metropolis-Hastings Chain
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Fig. 3 Unscented particle filter with independent 
Metropolis-Hastings chain sampling 
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( )( ) ( )
( )

( ) ( )
1 1 1      1 2

i
i

t t t
iX n k W n k− − −= + + Σ = +x  (12) 

( )( ) ( )
( )

( ) ( )
1 1 1   1 2

i
i n i n

t t tX n k W n k+ +
− − −= − + Σ = +x  (13)  

In Fig. 3, we show the block diagram of our filter design 
for the Bayesian filtering of camera system state. 
Unscented particle filter (UPF) [16] is a particle filter 
based on sequential importance sampling [8] and the 
unscented Kalman filter. R. van der Merwe et al. [14] 
showed that UPF outperforms standard particle filtering 
and other non-linear filtering methods.  

where ( )( )i
A  is  th singular vector of the matrix i

A and and . 2k = 6n = For dynamic systems, the importance proposal can be 
modeled with a mixture of Gaussian distributions and 
are obtained by a bank of unscented Kalman filters [22]. 
Because a moving camera is a dynamic system, we adopt 
the Gaussian mixture proposal distribution. This 
approach allows for a reduction in the number of 
particles. Our importance proposal distribution, a 
mixture of M Gaussian distributions is given by 

Predict the mean and the covariance of the system state 
from sigma points using the time evolution model 
in (3) ~ (8) (we denote a symbol 

2n+1
g  to represent the 

evolution model), and the measurement equation in (9): 



   

( ) ( )( ) ( ), ( ),
0: 1 1

1
,

M
j j UKF j U

t t t t t t t
j

g w N− −
=

= Σ∑x x x x .KF        (24) 

Drawing a sample according to the proposal in (24) has 
the following four steps: 

Select J th component from the Gaussian mixture 
proposal distribution in (24) with probability 
proportional to the weighting factor , which is 
represented with the cumulative distribution function 
(CDF) given by 

1tw −

( ) ( )
1

1
.

J
j

t
j

C J w −
=

= ∑                             (25) 

Predict the mean ( ),J UKF
tx  and the covariance ( ),J UKF

tΣ  by 
the way described in Section 4.1 

Draw a sample according to the proposal distribution 
written by 

 ( ) ( )( ) ( ), ( ),
0: 1 ,J J UKF J UKF

t t t t t tg N− = Σx x x x       (26) 

Accept or Reject the sample using rejection criteria.  

This procedure is repeatedly conducted until the 
generated sample is accepted. This algorithm is called as 
rejection algorithm. It is well-acknowledged that this 
algorithm is restrictive and inefficient [8]. For example, 
in rejection algorithm we should repeat the sampling 
procedure until one sample is accepted. To improve the 
efficiency and the convergence of the sampling 

algorithm, we adopt independent Metropolis-Hastings 
chain (IMHC) [8]: 

Select      with 

Propagate          and          with UKF

Generate         with 

( )C JkJ

( )
1
kJ

t−x ( )
1
kJ

t−Σ

( )kJ
tx

( )( ), ( ),,
k kJ UKF J UKF

t tN Σx

Compute the acceptance probability
( )1( ) ( ),k kJ J

a t tp −x x

Generate a Uniform (0,1)                          
random variable U

aU p≤

Accept ( )kJ
tx

Retain
NO

YES

1( )kJ
t

−x

NOthk k≥

YES

Unscented
Kalman Filter

Fig. 4 Independent Metropolis-Hasting Chain algorithm 
incorporated with unscented Kalman filter 

 Generate a sample X   from ( )g ⋅  
 Generate a Uniform (0, 1) random variable U  

 If  
( ) ( )
( ) ( )

min 1,
f X g X

U
f X g X

′⎡ ⎤
≤ ⎢ ⎥′⎢ ⎥⎣ ⎦

 accept X           

 else set X equal to X ′  
 
where X ′  is the previous value of X . This method has 
many preferable properties. It achieves re-sampling 
effect automatically and also avoids weight estimation. 
Re-sampling is necessary to evolve the system for time 

 to t 1t +  and to prevent the proposal distribution from 
becoming skewed. Our sampling procedure is illustrated 
in Fig. 4. Through this procedure, we generate M  
samples. 

We summarize the main part of our recursive camera 
resectioning algorithm: 

Recursive Camera Resectioning Algorithm 

Iterate for 1, ,J M= …  

Draw ( )J
t tX x=  from 

( ) ( )( ) ( ), ( ),
0: 1 ,J J UKF J UKF

t t t t t tg N− = Σx x x x      (27) 

by UKF and IMHC approach where the 
rejection probability can be computed as 

( ) ( )
( )

( )( )
1( )( )

( ) ( )
1

,
, min 1,

,

k

k

k

JJ
t t t tJJ

a t t J J
t t t t

f w
p

f w

−

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

y x θ
x x

y x θ
,  

(28) 

and the likelihood function as 

( ) ( ) ( ){ }1, exp T
nf −= − − Σ −y x θ y y y y� .�     (29) 

Compute the incremental weight 

( ) ( )( ) ( ) ( )( 1, ,J J J
t t t t t tu f q −= y x θ x x )J          (30) 

and let ( )( ) ( )
1

JJ J
t t tw u w −= . 

Normalize so that ( ) 1J
tj

w =∑ . 

Estimate the mode of the system state as like 

( ) ( )

1

M
J J

t t t t
J

E X Y w
=

⎡ ⎤ ≈⎣ ⎦ ∑ x .                     (31) 



   

5. Experiments 
We tested our algorithm on an image sequence of 90 
frames. Three key-frames were selected manually for 
this experiment. 3D structure points, image 
correspondences and camera intrinsic parameters were 
computed by our system presented in Fig. 1. We 
acquired about 209 features at each frame, 706 3D scene 
points, and the estimated focal length is 1001. We used 
30 particles for UPF, i.e. M =30, 5 iterations for IMHC, 
i.e. =5. We experimentally determined the values of 
system parameters as 

thk

ωσ � =0.0005, vσ � =0.003 and 
σ n =0.005, assuming that 2 Iω ωσΣ =� � , 2

v v IσΣ =� �  and 
2IσΣ =n n .  Initial means for camera system state were 

all zero, i.e. (1) ( )
0 0

M= = =x x… 0

)

but initial covariance 
matrices were initialized as   

. In Figs. 5 and 8, we 
compared our method with the standard method 
described in Section 2, the EKF-based method [3] and 
the non-linear method [18]. The estimation error 
depicted in Fig. 5 is the absolute difference of the 

estimated values between the non-linear method and 
other methods. ((1) (1)

0 0 diag  vωΣ = = Σ = Σ Σ� �…

 
Fig. 6 Video augmentation of bounding box: the first 

frame (top), the last frame (bottom) 

 
Fig. 7 Video augmentation of graphic object: the first 

frame (top), the last frame (bottom) 

 

Fig. 5 Comparison of accumulated estimation error: 
camera translation (top), camera rotation (bottom) 

In Figs. 6 and 7, we illustrated the video augmentation 
results to show that our camera resectioning algorithm 
was successfully applied to augmented reality. In Figs. 5 
and 8, we can see that our method outperforms the 



   

standard method and the EKF-based method, and gives 
results comparable to the non-linear method. 
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